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Abstract
Electronic and transport properties of finite carbon nanotubes subject to the
influences of a transverse electric field and a magnetic field with varying polar
angles are studied by the tight-binding model. The external fields will modify
the state energies, destroy the state degeneracy, and modulate the energy gap.
Both the state energy and the energy gap exhibit rich dependence on the field
strength, the magnetic field direction, and the types of carbon nanotubes. The
semiconductor–metal transition would be allowed for certain field strengths and
magnetic field directions. The variations of state energies with the external fields
will also be reflected in the electrical and thermal conductance. The number, the
heights, and the positions of the conductance peaks are strongly dependent on
the external fields. The heights of the electrical and thermal conductance peaks
display a quantized behaviour, while that of the Peltier coefficient does not.
Finally, it is found that the validity of the Wiedemann–Franz law depends upon
the temperature, the field strength, the electronic structure, and the chemical
potential.

1. Introduction

Single-walled carbon nanotubes (SWCNs) are quasi-one-dimensional (Q1D) systems
consisting of seamless graphene cylinders with nanometre-size radii [1]. They have been
extensively studied because of their unique electronic properties. Only through changing
their diameters and chiral angles can carbon nanotubes (CNs) vary from being metallic to
semiconducting. By cutting a long CN into segments, a quasi-zero-dimensional finite CN
is obtained. The scanning tunnelling microscope has been utilized to produce finite CNs
with length of a few tens of nanometres [2]. The reduction in dimensionality leads to many
interesting physical phenomena, e.g., quantized standing wave [3]; and novel magnetic [4] and
optical properties [5].
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Recently, the electronic transport in mesoscopic systems in whose dimensions are much
smaller than the electron mean free path has been extensively studied both experimentally
and theoretically [6–10]. One of the most important results is that for an one-dimensional
conductor, in the ballistic regime, the electrical conductance is quantized in multiples of the
quantum 2e2/h, which was first proposed by Landauer [6, 7]. In this system, each current-
carrying mode or conducting channel contributes 2e2/h to the electrical conductance. It has
been speculated that similar behaviour should exist for the thermal transport. Schwab and
collaborators observed the quantum of the thermal conductance, κ0 = π2k2

BT/3h, in nanosized
narrow wires [11].

Q1D CNs are very suitable systems for studying quantum transport properties. Carrier
scatterings will be seriously suppressed in one-dimensional systems because of the limited
phase space available. Experimentally, scattering lengths up to several micrometres have
been reported in metallic nanotubes [12]. Theoretical calculations show that a conducting
SWCN has only two conducting channels, and predict that the electrical conductance will
be 4e2/h, independent of radius and length [13, 14]. Frank and collaborators found the
quantized electrical conductance of multiwalled carbon nanotubes at room temperature [15].
The quantized conductance steps in solutions of multiwalled carbon nanotubes had also been
reported by Urbina and co-workers [16]. The experimentally observed linear T dependence of
the thermal conductance of SWCNs at low temperature may indicate the existence of quantized
thermal conductance in SWCNs [17]. Here, the electrical and thermal transport properties of a
finite CN are investigated within the ballistic regime.

2. Tight-binding method

A finite CN is formed by rolling a graphite sheet from the origin to the vector Ch = ma1 +na2,
where a1 and a2 are the primitive lattice vectors of the graphene sheet [1]. It has the radius
r = |Ch|/2π = b

√
3(m2 + mn + n2)/2π and the chiral angle ξ = tan−1[−√

3 n/(2m + n)].
b = 1.42 Å is the C–C bond length. The length of the finite CN is determined by the total
number of carbon atoms (NA). Therefore, a finite CN is characterized by (m, n; NA). With the
periodic boundary condition imposed on the electron wavefunction along the circumference,
the azimuthal wavevector k� equals J/r , and the angular momentum J is an integer. Details
of the geometric and electronic structures of finite CNs are given in [18].

Finite CNs can be classified into three categories according to their energy gaps [18]:
(I) moderate-gap semiconductors for energy gaps (Egs) ∼ 1–0.1 eV, (II) narrow-gap
semiconductors for Egs ∼ 0.01 eV, and (III) gapless systems for zero Egs. The main difference
between type-II and type-III CNs stems from the curvature effects.

Transport properties of finite CNs under a uniform transverse electric field and a magnetic
field with arbitrary polar angle are investigated in this work. We employ the tight-binding
model to calculate the electronic structures of CNs. In the presence of a uniform electric
field F perpendicular to the nanotube axis, the onsite energy of the i th carbon atom in tight-
binding calculations will be perturbed by the amount �E = −eFr cos �i , with �i being the
angle between the field direction and the position of the i th carbon atom along the nanotube
circumference. The nanotube axis and the electric field direction are assumed to be the z-axis
and x-axis, respectively. The x-axis is chosen in a way that the nanotube is mirror symmetric
about it. There is an extra degree of freedom by rotating the nanotube azimuthally; in such
a case the nanotube is no longer symmetric about the electric field direction, and a dephasing
angle can be defined between the electric field direction and the nanotube symmetric axis. The
band structures obtained are almost independent of this dephasing angle except at large field
strength, and the effect of the dephasing angle is neglected here.
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When a uniform magnetic field passes through a CN, the phase of the electron
wavefunction, which is determined by the vector potential, will be modified. The magnetic field
is assumed to have the polar angle α. Then the vector potential A equals φB cos α/2πr�̂ +
φB sin α sin �/πr ẑ, which will induce an extra phase factor exp(i2π�GR/φB0) in the
Hamiltonian matrix element between site i and site j . �GR = ∫ R j

Ri
A · d�l, φB = πr 2 B ,

and φB0 = hc/e is the magnetic flux quantum.
With the existence of external fields, we need to include all the carbon atoms in the finite

CN to construct the nearest-neighbour Hamiltonian, which is an NA × NA Hermitian matrix,

H =
∑

i

εi (F)c†
i ci +

∑

i, j

ti, j (B)c†
i c j , (1)

where εi = −eFr cos θi is the onsite energy and ti, j is the transfer integral between lattice
locations i and j ; only hopping between the nearest neighbours is considered. c†

i and ci are
the creation and annihilation operators at site i , respectively. The curvature effect is taken into
account by including Kane and Mele’s model [19] in assigning the values of ti, j s. Their model
successfully predicts energy gaps of narrow-gap CNs, which are in excellent agreement with
STM measurements [20, 21]. The details of determining ti, j s are given in [22].

After diagonalizing the Hamiltonian, the state energy Ec,v(F, φB , α) can be obtained.
The superscripts, c and v, represent the conduction bands and the valence bands, respectively.
With the inclusion of the Zeeman effect, the total state energy becomes Ec,v(F, φB , α; σ) =
Ec,v(F, φB , α) + gσφB/(m∗r 2φB0). The g factor is designated to be the same as that (∼2) of
graphite, where σ = ±1/2 is the electron spin and m∗ is the bare electron mass.

We consider a finite CN with a transverse electric field and a magnetic field with polar
angle α, which is suspended between two reservoirs (macroscopic leads). The left and right
reservoirs are assumed to have the chemical potentials and the temperatures (μ + eV , T )

and (μ, T + �T ), respectively. In the ballistic regime, making use of the Landauer–Buttiker
formula, the net electric and thermal currents are, respectively, given by

I (F, φB , α) = e

h

∫
dE T (E, F, φB , α)

[
f 0

(
E − μ − eV

T

)
− f 0

(
E − μ

T + �T

)]
(2)

and

U(F, φB , α) = 1

h

∫
dE (E − μ)T (E, F, φB , α)

[
f 0

(
E − μ − eV

T

)
− f 0

(
E − μ

T + �T

)]

(3)

where f 0 is the Fermi–Dirac distribution function, and the elastic transmission coefficient is
approximately given as

T (E, F, φB , α) = 2Tres

∑

E c,v

�2

[Ec,v(F, φB , α; σ) − E]2 + �2
, (4)

where � is the broadening width of the electron state energy caused by leaking into the emitter
or collector. In this study, � is chosen to be 3.3 × 10−5 γ0 (∼0.1 meV; γ0 = 3.033 eV). Tres is
the transmission probability at resonance (Ec(F, φB , α; σ) = E).

Within the linear-response approximation (�T → 0 and V → 0), I (F, φB , α) and
U(F, φB , α) are reduced to

I (F, φB , α) = L0(F, φB , α)V − L1(F, φB , α)

T
�T (5)

and

U(F, φB , α) = L1(F, φB , α)V − L2(F, φB , α)

T
�T, (6)
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where

Lβ(F, φB , α) = e2−β

h

∫
dE (E − μ)β T (E, F, φB , α)

−∂ f 0(E)

∂ E
. (7)

At low temperatures, the main contributions to Lβ (β = 1, 2, 3) come from electronic states
very close to the chemical potential. The electrical conductance is defined by G = I/V = L0

at �T = 0. The thermopower, which is the electromotive force (EMF) generated by the system
in response to a temperature gradient when I = 0, is just

S = V

�T

∣∣∣∣
I=0

= L1

TL0
= �

T
, (8)

where � is the Peltier coefficient, and this relation between the thermopower and the Peltier
coefficient is the well-known Kelvin–Onsager relation. Studying one of the two properties
is sufficient. The thermal conductance is defined as the net thermal current produced by a
temperature gradient at I = 0, and is given by

κ = −U

�T

∣∣∣∣
I=0

= L2 − L2
1L−1

0

T
. (9)

Equation (8) is employed to calculate the Peltier coefficient and equation (9) for the thermal
conductance.

3. Results and discussion

We have chosen the type-I (10, 10; 180) CN as a model study. The variations of state energies
with the electric field strength F at φB = 0 are shown in figure 1(a). Electronic energies are
symmetric about the Fermi level EF = 0. They touch the Fermi level at certain Fs (0.2, 0.238,
0.374 and 0.382 V Å

−1
), and vary linearly around these values. The parallel magnetic field

(α = 0◦) changes the linear F dependence into a parabolic dependence (figure 1(b)), but not the
transverse magnetic field (α = 90◦; figure 1(c)). That the parallel magnetic field would induce
a shift in k� from J/r to (J + cos α φB/φB0)/r is the main reason. The parallel magnetic
field also opens an energy gap at F = 0.2 V Å

−1
. The Zeeman splitting would introduce a

further split for the spin-up and spin-down states. The changes in state energies at α = 90◦ are
mainly due to the Zeeman effect (figure 1(c)). The type-I (10, 10; 180) CN is a moderate-gap
semiconductor signified by an energy gap ∼0.36γ0 at zero external field. The energy gap is
reduced by the transverse electric field, the parallel magnetic field, or the superimposed electric
and magnetic fields.

The complex relation between energy gap and external fields deserves a closer
examination. The dependence of Eg on the electric field strength F and the magnetic field

direction α is shown in figure 1(d). For F less than 0.18 V Å
−1

, the energy gap decreases with
increasing α (figure 1(d)). That is to say, Eg is comparatively easier to be modulated by the

transverse magnetic field. For F greater than 0.18 V Å
−1

, the energy gap displays complicated
behaviour with varying F and α. The semiconductor–metal transition takes place for all αs,
and the F values leading to the occurrence of such transition depend on α.

The electrical conductance exhibits sharp peak structures with varying F at T = 2 K,
as shown in figure 2. Explanations of the spike behaviour are as follows. The ∂ f (E)/∂ E
function is a prominent Lorentzian function at the Fermi energy at low temperature. When the
lowest states are far from the Fermi level (signified by a nonzero energy gap), G is vanishing.
At particular values of F , the lowest states may touch the Fermi level and contribute to the
electrical conductance. The positions of the peak correspond to the F values that lead to the
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Figure 1. The state energies versus the transverse electric field strength F for a (10, 10; 180) CN
at (a) φB = 0, (b) φB = 0.2φB0 and α = 0◦; (c) φB = 0.2φB0 and α = 90◦. (d) Energy gap
dependence on F for a (10, 10; 180) CN at φB = 0, and φB = 0.2φB0 with different αs.

semiconductor–metal transitions, and their heights are related to the number of states at the
Fermi level. At φB = 0, there are four peaks. The inclusion of a magnetic field will change the
number, positions and heights of the sharp peaks. The heights of the peaks display quantized
behaviour. At φB = 0, they are about two times those at φB = 0.2 regardless of the value of α.
The reason is as follow. At φB = 0, the spin-up and spin-down state energies are degenerate,
touching the Fermi level at the same F values, and they contribute equally to the electrical
conductance. A nonzero φB will shift the state energies and break the spin degeneracy. The
resulting states might or might not cross the Fermi level. If they do cross the Fermi level, the
original single peak will separate into two peaks with half of the height. The number of peaks
is maximum at α = 90◦.
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Figure 2. The electric-field-dependent electrical conductance at T = 2 K, μ = 0, and φB = 0.2φB0
for the (10, 10; 180) CN at (a) α = 0◦, (b) α = 30◦, (c) α = 60◦, and (d) α = 90◦. Electrical
conductance dependence on the electric field strength F at φB = 0.2φB0 and α = 0◦ for (e) a (10,
10; 160) CN, (f) an (18, 0; 180) CN, and (g) a (12, 6; 180) CN. The cases with φB = 0 are shown
as dashed line.

We have also calculated the electrical conductance of some other finite CNs: a type-II
armchair (10, 10; 160) CN, a type-III zigzag (18, 0; 180) CN, and a type-I chiral (12, 6; 180)
CN. All three CNs have roughly the same radii as that of a (10, 10; 180) CN. The ballistic
transport properties that we discuss here are found to essentially rely on how the states cross
the Fermi energy as the external fields vary. The type of nanotube only affects when and where
the crossing occurs. The results we obtained for the type-I armchair (10, 10; 180) CN are
general and applicable to other types of nanotube, except for the type-III zigzag (18, 0; 180)
CN at φB = 0, in which the electrical conductance stays at 2.8 Trese2/h regardless of F . This
is due to the fact that at zero magnetic field, there are always two localized edge states [18]
(spin-up and spin-down) at the Fermi energy for a zigzag CN. Although the applied electric
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Figure 3. The electric-field-dependent thermal conductance at T = 2 K, μ = 0, and φB = 0.2φB0

for a (10, 10; 180) CN at (a) α = 0◦, (b) α = 30◦, (c) α = 60◦, and (d) α = 90◦. The electric-
field-dependent Peltier coefficient at T = 2 K, μ = 0.15γ0, and φB = 0.2φB0 for a (10, 10; 180)
CN at (e) α = 0◦, (f) α = 30◦, (g) α = 60◦, and (h) α = 90◦. The cases with φB = 0 are shown as
dashed line.

field modifies the electronic structure, it does not change the number of edge states at the Fermi
energy, which is the only factor that determines the conductance.

The number, the heights, and the positions of the thermal conductance peaks are closely
corresponding to those of the electrical conductance (figures 3(a)–(d)). The special relationship
κ ≈ (π2k2

B T/3e2)G, as discussed later in equation (12), is the main reason. The differences
in the shape and extent of the spikes between the electrical conductance and the thermal
conductance originate from the different integrands in equation (7). The integrand of L1

(equation (7)) is an antisymmetric function of E − μ. When μ = 0, the Peltier coefficient
will be identically zero. The computed Peltier coefficient at μ = 0.15γ0 is shown in
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Figure 4. The dependence of (a) the electrical conductance, (b) the thermal conductance, and (c) the
Peltier coefficient on the electric field strength F at φB = 0.2φB0 and α = 90◦ for a (10, 10; 180)
CN at various temperatures.

figures 3(e)–(h). It exhibits an antisymmetric structure, a peak followed by a dip, at resonance.
There is a sudden sign change as F varies slightly, which is caused by the antisymmetric nature
of L1. � becomes weakly dependent on α for large α (>60◦). Furthermore, the heights of
� do not exhibit quantized behaviour, and they are independent of the spin degeneracy. The
functions L0 and L1 are individually proportional to the number of degenerate states at the
chemical potential, but the ratio or � is not. Hence the state degeneracy cannot be determined
by experimental measurements of �.

The broadening effects due to temperature are shown in figures 4(a)–(c). The finite
temperature smears out the ∂ f (E)/∂ E delta function with a width kBT , and consequently
changes the number of conducting states. The prominent peak structure of the electrical
conductance and the double-peak structure of the thermal conductance are gradually broadened
by the increasing temperature. At the same temperature, the integrand of L2 (equation (7)),
which is quadratic in E − μ, is more spread in energy than that of L0. Therefore, κ is
more susceptible to the thermal broadening effect than G. The amplitude of � grows with
temperature, whereas those of G and κ decline.
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Figure 5. Relation between the thermal conductance and the electrical conductance versus F for a
(10, 10; 180) CN at φB = 0.2φB0 and α = 90◦ at μ = (a) 0, (b) 0.15 γ0 with various temperatures.

At low temperature, making use of the Sommerfeld expansion [23], L2 can be
approximated as

L2 ≈ π2k2
BT 2

3e2
L0. (10)

For a Q1D infinite CN, as pointed out by Lin and collaborators [24],

L2 	 L2
1L−1

0 , (11)
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thus

κ ≈ L2

T
≈ π2k2

BT

3e2
L0 = π2k2

BT

3e2
G, (12)

which is the famous Wiedemann–Franz (WF) law, and they found that the WF law is valid
when there is no subband crossing the Fermi level. It is of interest to investigate whether this
law holds for quasi-zero-dimensional finite CNs. Due to the different temperature dependence,
the ratio κ/G fluctuates strongly about 1 (in units of π2k2

BT/3e2) when states approach
the chemical potential (figures 5(a) and (b)). The amplitude of fluctuation increases with
temperature. On the other hand, the WF law is well obeyed in a wide range of F when the
states are far from the chemical potential. Therefore, the validity of the WF law, apart from its
dependence on temperature, the external field strength, and the electronic structure, also relies
on the chemical potential.

4. Conclusion remarks

In summary, the tight-binding model has been employed to investigate the electronic and
transport properties of finite carbon nanotubes subject to the influences of a transverse electric
field and a magnetic field with varying polar angle. The external fields will modify the state
energies, destroy the state degeneracy, and modulate the energy gap. The state energy and the
energy gap exhibit rich dependence on the field strength, the magnetic field direction, and the
types of carbon nanotubes. A semiconductor–metal transition would be allowed for certain field
strengths and magnetic field directions. The variations of energy dispersions with the external
fields will also be reflected in the electrical and thermal conductance. The number, the heights,
and the positions of the conductance peaks are strongly dependent on the external fields. The
heights of the electrical and thermal conductance peaks exhibit quantized behaviour, while that
of Peltier coefficient does not. Finally, it is found that the validity of the Wiedemann–Franz law
relies upon the temperature, the external field strength, the band structure, and the chemical
potential.
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